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Ising model with isotropic competing interactions in the presence of a field:
A tricritical-Lifshitz-point realization
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We consider a spin system with competing interactions that are isotropic with respect to the
axes of a cubic lattice. On the basis of an € expansion, we demonstrate that for small values of the
external field H, the paramagnetic-to-modulated-phase transition remains first order. For larger
fields, such a transition changes to a continuous one at a tricritical point. As one varies the wave
vector g. that is related to the modulated phase, one finds a line of such tricritical points. We
remark that such a line must end at a Lifshitz tricritical point at g. = 0.

PACS number(s): 05.50.+q, 05.40.+j, 05.70.Fh

I. INTRODUCTION

The recent interest in the properties of modulated
superstructures has stimulated the introduction of a
wide variety of different models. For applications to
magnetic compounds and other anisotropic systems, an
Ising model with competing interactions along a sin-
gle direction [axial next-nearest-neighbor Ising model
(ANNNI)] was introduced and extensively studied [1].
Its phase diagram exhibits basically three phases (see
Fig. 1): paramagnetic, ferromagnetic, and modulated
phases. The modulated phase is characterized by an
amplitude and a phase g.. Both the paramagnetic-to-
ferromagnetic and the paramagnetic-to-modulated-phase
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FIG. 1. Schematic phase diagram of the three-dimensional
ANNNI model in the presence of an external field. Here a
critical o surface is separated from a first-order transition
by a line of tricritical points (dot-dashed) that ends at the
Lifshitz point. Similar phase diagram is also obtained for the
INNNI model when mean-field approximation is used.
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transitions are continuous (Ising-like and XY-like, re-
spectively). As one allows g. — 0, those two lines meet
the ferromagnetic-to-modulated-phase first-order phase
transition at a Lifshitz point.

Although this analysis provides an explanation of the
presence of modulated phases, the model does not have
the possibility of modulated order in more than one di-
rection. Indeed, in the analogous structurally modulated
phases observed in binary alloys [2,3] we would normally
expect the underlying couplings between the structural
units to be isotropic. In order to repair this defect,
Widom [4], as well as Upton and Yeomans [5,6], intro-
duced an Ising model with isotropic competing interac-
tions [an isotropic next-nearest-neighbor Ising (INNNI-
model]. Within mean-field approximation and at the
high-temperature region, they found a phase diagram
quite similar to the phase diagram for the ANNNI but
that it allows modulation in more than one fixed direc-
tion. This modulation arises in two forms: along any
of the cubic axes (we will call it uniaxially modulated
phase) or along any diagonal direction (cubically mod-
ulated phase). In order to check these results beyond
mean-field approximation, we allowed fluctuations [7,8].
First, we noted that the possibility of different orienta-
tions for the modulated phase introduced new degrees
of freedom. Consequently, in order to include them,
following an usual procedure [9], we mapped the orig-
inal model in a 2m-component spin model with cubic
anisotropy within the m components, where 2m = 6 for
the uniaxially-modulated phase while 2m = 8 for the cu-
bic modulated phase. The 2m-vectorial model exhibits
a stable fixed point and that would usually lead to a
well-defined critical behavior [10]. But, since the phys-
ical parameters of the original model were outside the
domain of attraction of such a fixed point, no critical-
ity would arise and the transition was found to be first
order. Note that, in that case, fluctuations change dras-
tically the mean-field results.

Unfortunately, this mapping cannot be applied close
to the Lifshitz point where ¢. — 0 and, consequently,
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we were not able to guarantee that the transition would
stay first order up to the “Lifshitz point” (of course, if
the transition would stay first order all the way through
the g = 0 locus, the Lifshitz point would be an end
point). We then decided to use another approach and,
instead of using the mapping, we stayed in the vicinity of
g¢. = 0 and we employed a renormalization group in the
d = 8 — € expansion. In that case, we found a continuous
transition that should indicate that the Lifshitz point
should be critical [7,11]. This method is, as the previous
approach, not satisfactory, since its results are valid close
to d = 8 and that it is far from the physical dimension
d = 3. In resume one cannot say, until now, what is the
character of the Lifshitz point.

In this paper, we try to understand what happens close
to that point. In order to do so, we analyze the ef-
fects on the paramagnetic-to-modulated phase transition
when an external field H is introduced.

In order to construct a phase diagram, we perform a
mean-field analysis. Under that approximation, we show
that the critical line, present in the absence of the ex-
ternal field, gives rise to a critical surface as one allows
a nonzero external H. That surface meets a first-order
phase boundary at a line of tricritical points. Such be-
havior is quite similar to the ANNNI case (see Fig. 1),
which is not surprising since, even in zero external field,
both phase diagrams exhibit some resemblance.

Next, we study what happens when one allows fluctu-
ations. For low values of the external field H < Hy,,
we find that the first-order line, which we have ob-
tained for H = 0 [7,8], becomes a first-order surface
symmetric in H = 0. This phase boundary is limited
by lines of tricritical points situated at critical fields
H = £H;. For H > H; a critical surface can be
found. As one increases the external field even more one
finds, at | H |= Hy, > H,,, another line of tricritical
points where the continuous surface finds another first-
order phase boundary. Both H;, — 0 and Hy;; — 0 as
gc — 0, indicating that the Lifshitz point should be crit-
ical.

The layout of this paper is as follows. In Sec. II we in-
troduce the model and we give its mean-field solution. In
Sec. III, we discuss the Hamiltonian of this system in a
form suitable for renormalization-group analysis. In par-
ticular, we employ a “folding process” that eliminates the
irrelevant degrees of freedom. Different from the H = 0
case, due to the presence of a nonzero external field, be-
sides the 2m (where m = 3 or m = 4) critical fields,
we also keep other noncritical spin fields, associated with
the uniform and second-harmonic components. Recur-
sion relations to first order in € = 4 — d expansion are ex-
plicitly obtained and a stable fixed point is found. Even
though many noncritical fields are maintained due to the
iterations of the renormalization-group transformations,

_

many terms in the full Hamiltonian become irrelevant
and a simple critical picture emerges. Indeed, in Sec.
IV, we confirm this result since a partial trace over the
renormalized Hamiltonian leads to a reduced very simple
Hamiltonian. We show that this effective Hamiltonian is
in the same universality class as the 2m-vectorial model
which exhibits a stable fixed point and a well-known crit-
ical behavior. We then show that, due to the presence
of the external field, the physical parameters, different
from what happens in zero field, are inside the domain of
attraction of such stable fixed point if Hy, > H > H,,.
In that case, a continuous transition arises; otherwise, if
H < H;, or H > H,,, it should be first order. We end
Sec. IV with some conclusions.

II. MODEL

The Ising model with isotropic competing interactions
can be described as follows. Each cubic lattice site r
is occupied by an Ising spin s(r) that interacts through
nearest-neighbor interactions of strength J, next-nearest-
neighbor couplings along the cubic axes of strength
—k1J, and next-nearest-neighbor interactions across the
face diagonals —k3J. The Hamiltonian of such system is
given by

H=—5> s(@J(@s(-a)~H) s(a) @)

q

where H is here an external field and the Fourier trans-
form of J(r —ry) is J(q) given by

J(q) = 2J[cos(qz) + cos(gy) + cos(q,)]
— 2K1J[cos(2q,) + cos(2gy) + cos(2q.)]
— 4K2J[cos gz cOs gy + €OS g COS g, + COS gy COS G, ].

()

In the absence of the external field H, this model was
recently studied through mean-field approximation by
Upton and Yeomans [6]. They found that, besides the
usual paramagnetic and ferromagnetic phases, there is a
modulated phase for 1—4k;—4k, < 0. This phase is char-
acterized by long-range order and by a maximum value
of J(q) at q = q.. Different from the ANNNI model, the
wave vector in this model points along any axial z,y, or
z direction if k1 < K2/2 and along any diagonal direction
if K1 > Ko / 2.

Let us now see what happens when one introduces an
external field. In order to do so, we will employ a mean-
field approximation. As usual with these types of models
[6,12], the free energy can be derived from the Bogoliubov
inequality which leads to

F=nN-1 zt:{—-kBTln [2 cosh(Z BJ(x — r1)m(r1) + ﬂH)] + % gm(r)J(r _ rl)m(rl)} 3)

ry
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where m(r) = (s(r))o is the magnetization ({)o is the
ensemble average with respect to the trial Hamiltonian
in the Bogoliubov inequality) specified by

m(r) = tanh (ﬂ > " J(r —r1)m(r1) + ﬁH) . @

ry

At sufficiently high temperatures, this equation is ful-
filled by a paramagnetic solution given by

mgy = tanh (,BH + Bmo Z J(r— r1)> (5)

ra

and, consequently, it is convenient to write

m(r)

=Y J(r —r1)[m(rs) — mo(ra)], (6)

where a . # 0 characterizes the ordered phase. Now, for
small values of the external field, the magnetization mg is
also small. Also, close to criticality, the magnetization m
is also small and, consequently, one can linearize Eq. (3)

to find
1 - - -
F=Fy+ 3 Eq m(q)7(q)m(—q)

+w Y (a1)m(qz)(qs)s (Z qz)

{a:}

+ud m

{a:}

- Yy )

m(q1)m(qz)m(qs)m(qs)d (Z %)

k2

where Fj is independent of m4 and the magnetization mg

is given by the zero of h. The parameters in Eq. (7) are
given by

J(q)
w= "L,
- 3 0 »
kT

From Egs. (2) and (7), one sees that two phases can be
found: a disordered phase m = 0 at high temperatures
(T > T.) and an ordered phase 7 # 0 at low tempera-
tures (T < T.). Therefore a critical surface can be found
at

kpT. = maxq[J(q)(1 — m(z))] ) (9)

where q. specifies the critical wave vector. If 1 — 4xk; —
4Kk2 > 0, g = 0 and the ordered phase is ferromagnetic.
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If, otherwise, 1 — 4x; — 4k2 < 0 and k3 > 2K1, the vector
q. is along the z, y, or z direction and it is given by

1-— 4I€2
4/‘-',1 ’

cosq. = (10)

It is then clear that the critical modes m(g.) play the role
of the Landau order parameter in this theory. Now, it is
straightforward to minimize the free energy Eq. (7) with
respect to the noncritical terms m(q = 0),m(2¢c), ...,
which should be eliminated in favor of the critical vari-
ables m(g.). On doing this, one finds the free energy

F =Fo+ Y m(qd)fi(—qF)
+ 2y [m(q2)m(—q2)]
+9 Yy m(af)m(-

(a#B)

a)m(q?)ym(—-qf), (11)

where a, 8 = 1,2,3 indicate the z,y, or z direction, re-
spectively, and

- 18w? 9w?
u = 6u — — — = s
7(0) 7(24.,0,0)
1 2 2
5= 12u— oW 36wt (12)

7(0) 7(ge, 9c, 0)

Minimization of this free energy leads to the following
possible ordered phases. First, if @ < 9/2, or else if

2 1 1
7(¢e,9,0)  7(0,0,0)  7(2¢.,0,0)

<0, (13)

the ordered phase will exhibit axial order since
Eq. (9) leads to a nonzero value of m(%gq.,0,0) # 0,
m(0, £qc,0) # 0, or m(0,0,+q.) # 0 (axial order). Note
that here only one of the m will be nonzero.

Now, if & > ©/2, or else if

2 _ 1 1
7(gc,4c,0)  7(0,0,0)  7(2¢c,0,0)

> 0, (14)

the ordered phase is characterized by nonzero values of
m(%ge,0,0) # 0, m(0, +q.,0) # 0, and Mm(0,0, £q,) # 0
(cubic order). In both cases, the critical surface meets
the first-order phase boundary at a tricritical point at
% = 0. This line of tricritical points ends at the Lif-
shitz point that is a tricritical Lifshitz point. Note that
this phase diagram is qualitatively similar to the phase
diagram obtained in the ANNNI case (see Fig. 1) [12].
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III. THE RENORMALIZATION-GROUP
APPROACH

Now let us consider what happens when one allows
fluctuations. On going to a continuous representation by
adding a weighing term w(s) for each spin, one finds a
Hamiltonian given by

A=

N[ =

S s(@)uz(a)s(—q)
- u4z s(a1)s(az)s(as)s(qq)s (Z qz)
(15)

+ > h(-a)s(a)

where, as usual, we have #H = —H /kpT — w(s) with H
given by Eq. (1) and

wy =1 J(a)
ksT ’
h = kgTH. (16)

Now, due to the presence of an external field, even
in the paramagnetic phase a nonzero magnetization mg
is present. As usual, in order to take fluctuations into
account, we make an expansion about the paramagnetic
phase. It seems thus natural to shift the spin variable
s(q) = mo + 5. The Hamiltonian given by Eq. (15) then
becomes

5(07070) =09 ,

~ 1
§(gi £ ¢.,0,0) = @iz

) 1
5(q £ 4c,95 £ ¢c,0) = (2)1/2(

- 1
s(qi + qcaqj + QCao) = (7)1‘75

- 1
S(Qi + 2qc’0a0) = (2)—1/2

(of £i03),

(o] e 3
0§ +iog),

(08 £10¢),

(o5 £iog),
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ﬁ:m H,
= %q (@)7(a)3(—a)
Z (a1)3(q2)3(qs)d (Z}q)
— iy {Z} (a1)3(q2)3(as)5(q4)d (Z qz)
; (17)

+ > h(-a)i(q) ,

where the magnetization mo was chosen in order to have
h = 0, where

T = (%) + 1211,47’7'1,(2) 5
W = 4U4m0 )
h

_ 3
= h —uamgy — 4dugmy ,

[~3}
I3

4=1Ug, (18)

and where o does not depend on the spin variables.

Now that we have the Hamiltonian properly writ-
ten, we need set out a renormalization-group program.
Such program should be done by the “shell strategy.”
That process, usually applied for the paramagnetic-to-
ferromagnetic-phase transitions, eliminates the irrelevant
degrees of freedom related to the noncritical spins. Note
that, in the present problem, for modulated phases, fluc-
tuations with q close to q. will be critical and, in that
case, will play an essential role. To take them into
account, we introduce a new Brillouin zone given by
¢; < g./2 with i = z,y,z. Then, as usual [9,7], we fold
the original zone into the new one by (i) dividing the sums
over q into pieces running from (I;—1)q./2 <| ¢; |< l;q./2
with ¢ = z,y,z and with [; = 1,2, ..., and (ii) shifting the
sums to run from | ¢; |< g./2 and defining new spin
variables given by

a=1,23, i==z,y,2

a=1,2,3, (i,j) = (z,9), (z, 2), (v, 2)

a=1,2,3,

(""J) = (‘7"7 y)a (=, Z)’ (y, Z)

a=1,2,3,i==z,9,2 (19)
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where here, for simplicity, we are assuming modulation
along z,y, or z direction (k1 < k2/2). Similar results
are obtained when one studies the modulation along the
diagonals (k1 > K2/2).

After those steps, the Hamiltonian given by Eq. (15)
maps into a new one given by

- 1 -
=~ Z{:[ao(q)ro(q)ao(—q)

+ Y of(@)F(a+af)of(ac)]

qi,a

— Wo Z ool(07)% + (6811)7]
{q,-},a

—by Y {o5[ogof + 0505] + 0flogol + ofof]
{a:},a,8

+ of[ogof — 050l + oblogol — oo}

— 0% (0%)* + 20507 03]

— @z Y [0F(oF)”

{ai},x

—a Y [(0)? + (03)%)

{a:},a

~5 3 (092 + (69)%[(6F)? + (05)%] + O(c)
{ai},a,8
(20)

where o = 1,2, 3,. .. specifies the wave vectors (q., 0, 0),
(qC’ qC’0)7 (ch’o, 0)’ .. a'nd

770 f(Q) E]

= F(Qz + q070a0) )

7_~1 = F(Qz + qc, qj + qmo) )

772 = 'F(qz + ZQC7 07 0) 9

- w _ .
’11)0—':‘\/—15:\/511)2:3111,

u 3u

= ZU4,
2
v = 3’LL4. (21)

Of course, we only considered contributions compatible
with the wave-vector conservation and we omitted i+ j +
k > 2 terms since they turn out to be irrelevant under
renormalization-group transformations.

Renormalization-group (RG) transformations are then
generated in standard way [13,12] leading to differential
equations given by

di
d—T; = €il — 40a° — 8(m — 1)3% + 24az,
+324zy + 8(m — 1)dx, — 4z — 82
—8zozy — 2(m — 1)z7 ,
di
d—’l’ = € — 3205 — 8m? + 409z
+120x5 + 1691 + dmiz; — 42 — 12z92;
—8z122 — 2(m — %) z.,
d.’Eo ~ ~
o= €xo — 324z — 16(m — 1)Vxo + 16z022
+8(m — 1)zoz1 + 8 (1 —+ %) z3
d
% = exy — 160z, + 8xoxy + 6:1:% s
d
%2— = exy — 16Uy + 8Ty + 43:% s (22)

where m = 3 for modulation along the z, y, or z direction
and m = 4 for diagonal directions. On fixing m = 3, one
finds that the recursion relations exhibit a very simple
form given by

dii
d_;‘ = el — 40@% — 1652 4 24az, — 8zoxs ,
v
d_zl’ = €0 — 32u0 — 240° + 240z — 422
d
% = exg — 32Uz — 3200 + 203:(2) , (23)
d
% = €r1 — 16’(_1$1 + 8130(1,'1 — 2.’13% .
d
—;li = exy — 164z, + 8ToT2 — 473 , (24)
where
_ - Ty
=14 —,
2
_ ~ T2
%2 25
V=0 (25)

The RG equations as given by Egs. (23) determine
many fixed points. The critical behavior of the system
is, nevertheless, specified by only the following:

]
I

44’
B €
= —,
88
2o=0, z1 =22=0, (26)

which we will call fixed point (a),

€

= —,
56
5o &
© 567
To=0, z1 =2,=0, (27)

which we will call fixed point (b),
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-
4=,
44
€
TR
o =0, 3 = —¢€ x—le (28)
0o—=Y 1= 295 2= 44
which we will call fixed point (c),
€
= —,
56
-
= —,
56
5 5
= 07 = —¢€, = —€,
To T 146 To 286 (29)
which we will call fixed point (d), and
€ €
ﬂ=ﬁ=$0=07 1:1:57 m2=23 (30)

which we will call fixed point (e).

Linearization of the RG equations and the calculation
of the corresponding eigenvalues and eigenvectors give
the nature of those fixed points. The fixed point (a) ex-
hibits three positive eigenvalues and consequently is sta-
ble in the (u,v, zo) subspace. The fixed point (b) is stable
only in the subspace (u = v, o). The fixed point (c) has
five positive eigenvalues and, consequently, is stable; (d)
has one negative eigenvalue related to the unstabilities
present within the (@, s) subspace; (e) has three negative
eigenvalues related to unstabilities in the (@, 9, zo) plane.

What happens here? For h = 0, as we already know
[7,8], even though there would be a stable fixed point
[fixed point (a)], since the physical parameters, as can
be seen from Eq. (21), are in the domain of the unstable
fixed point (b), the transition is believed to be first order.

For h # 0, the fixed point (c) is the stable. In that
case, if the physical parameters would be in the domain
of (a) in the absence of external field, one would verify a
crossover from (a) to (c) when the field would be applied.
But this is not the case. One can see from Eqs. (21) and
(25) that, for a small external field, namely h < h;,, the
physical parameters are in the domain of the fixed points
(b) and (d) (since & < @) and, consequently, for small
fields a first order should be expected. As one increases
the external field, the couplings (@, ) decrease and, pre-
cisely at h = hy, specified by @ = ¥, the system is able to
reach the stable fixed point (c). At that tricritical point,
the transition changes from first order to continuous. For
h > hy, there is a critical surface with a critical behavior
specified by the exponents

_1,3 . 605 ,
Y= 3T 22T 10548
5 2
= —¢”“. 31
n=5a€ (31)

Now, on increasing even more the external field, one
finds at h > hy,, where (@ < 0), a “critical runaway” as-
sociated with the flow to the unstable fixed point (e).
At h = hy,, the tricritical point, associated with the
Gaussian-like fixed point (e), leads to a first-order tran-
sition. Figure 2 illustrates this. Note that this last step

PARA

FIG. 2. Schematic phase diagram of the three-dimensional
INNNI model in the presence of an external field. The
first-order phase boundary present for small fields changes to
continuous at a line H = H,, of tricritical points. The con-
tinuous hatched surface is limited by two lines of tricritical
fields, namely H = H;, and H = H,,:. Beyond the tricritical
field H > H,, the transition becomes first order.

is quite similar to what happens in the absence of fluctu-
ations. In that sense one can argue that fluctuations are
relevant only in the small field region.

IV. THE EFFECTIVE HAMILTONIAN

Fluctuations can also be considered, using an alterna-
tive approach. One can argue that since the fields asso-
ciated with wave vectors close to (0,0,0), (2¢.,0,0), and
(4es g, 0) are noncritical, the spin fields related to them
can be integrated out leading to an effective Hamiltonian
given by

Flaw = =3 3 S0t (@)eno? (@)

—diea Y, [(67)® + (05)°)

{ai},a

— T Y [(0F)7 + (05)%]1(0F)* + (02)%), (32)

{a:},a,8
with

Fop = 7 + O(ug, w?) ,

- 3y 9w? [ 2 1
Uef — (7 — 5 | = — = ’
ff 2 4 To To
9w [ 1 2
Vef = 3Ug — — | — — —| - 33
Veff Ugq 5 [Fo 7_1} ( )

The above coefficients were obtained using diagram-



1750

matic techniques and treating the cubic terms perturba-
tively. Now one can see that this effective Hamiltonian is
in the same universality class as the 2m-vectorial model
with m = 3 for k1 > k3/2 and m = 4 otherwise. This
model was studied by Mukamel and Krinsky [10,7] by
means of renormalization-group transformation to sec-
ond order in the ¢ = 4 — d expansion. They found the
following fixed points:

€

(a) dg = 4_0"625 =0
. € - .
(b) dzg = mﬂ’:ﬂ = Ugg ,
—1
(c) g = 2 2 < (34)

8(5m —4) " F ~ 8(5m —4)

where only the last one is stable. Associated to that
point, they computed critical exponents given by

_1+3(m~1)6
R IR T—
0m?2 + 253m — 334
+(m_1)(2m + m )2

16(6m —4)3 <’
_(m-1)@m-1) ,

4(5m — 4)2 (35)

n

Let us consider again the m = 3 ( axial order) case.
Then, as we already stressed, the stable fixed point
urge = 2vi; would be accessible only if the physical pa-
rameters & and v are inside its domain of attraction. In
the absence of the external field, since 2u.g = veg, this
is never realized since the physical parameters are near
the unstable fixed point (b). In that case, one usually
assumes that no criticality could be found and the tran-
sition must be first order, confirming our results in Sec.
111 [8,7].

On introducing an external field, one can see from
Eq. (33) that, even though both couplings (Geg and Tes)
decrease as h increases, the ratio @eg/U.g increases. In
this sense, even if one begins with @eg/Veg < 1 for h = 0,
one finds, for A > hy,, tesr/Vesr > 1 and consequently the
physical parameters are now near the stable fixed point
(c). From Eq. (33), one sees that this last inequality
implies that

iy < 3 2 [i — i] . (36)

For these values of the physical parameters, the system
exhibits a continuous transition with critical exponents
given by Eq. (31). The tricritical field h = hy, = BH,,,
where the transition changes from first order to contin-
uous, is related to the magnetization mo = my, through
Eq. (18) and it is completely specified by Eq. (36) when
the equality holds.

On increasing even more the external field, for A > hy,,
the physical parameters enter in the domain of attraction
of the unstable fixed point (a), leading to a first-order
transition. In that case, since v.g < 0, one has
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g < ng [i - 3] . (37)

The tricritical point at h = h;, = BH,,, the locus
where the continuous transition associated to the fixed
point (a) becomes first order, is associated with the mag-
netization mo = my, by Eq. (18) and is specified by
Eq. (37) when equality holds.

Both tricritical loci depend on the wave vector g.
through the values of (rg,r1,72). As one varies g., both
tricritical points originate two lines of tricritical points.
One can now ask what does happen when on decreas-
ing q., one approaches the Lifshitz point. On computing
both Egs. (36) and (37), one finds that both fields de-
crease smoothly (hy;, — 0 and hy, — 0) as the critical
field approaches to zero ( g. — 0).

In resume, we have studied the Ising model with
isotropic competing interactions in the presence of an ex-
ternal field. We first analyzed the model through mean-
field approximation and we show that, in that case, the
paramagnetic-to-modulated-continuous-phase transition
present in the absence of a field becomes a critical surface
limited by a tricritical line. This line ends at the Lifshitz
point. This behavior is quite similar to the ANNNI case,
leading us to the belief that the mean-field approach does
not differentiate isotropic from anisotropic cases.

Next, we discussed what happens when one allows fluc-
tuations. By renormalization-group analysis, we con-
firmed our previous result that at zero field the tran-
sition is fluctuation-induced first order. In the presence
of a small field, this first-order line becomes a surface.
At the tricritical field h = hy, the transition changes to
continuous. On increasing the even more external field,
one finds at h = h;, another tricritical locus where the
transition changes again to first order. On varying the
critical wave vector, both h = hy; and h = hy, origi-
nate lines of tricritical points. Those lines end at the
Lifshitz point (g. = 0) which, in that case, should be a
tricritical Lifshitz point. Although our calculations were
done only for modulations along the z,y, or z direction
( K1 < K2/2), the same results are obtained for modula-
tion along the diagonals (k1 > K2/2) .

Unfortunately, since the folding process is not valid
for k1 = K2/2, we cannot apply them to the microemul-
sion limit. In that case, another diagrammatic procedure
must be applied [14-16].
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